
Autoresonance in a dissipative system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 215203

(http://iopscience.iop.org/1751-8121/43/21/215203)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/21
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 215203 (16pp) doi:10.1088/1751-8113/43/21/215203

Autoresonance in a dissipative system

Sergei Glebov1, Oleg Kiselev2 and Nikolai Tarkhanov3

1 Ufa State Petroleum Technical University, ul. Cosmonavtov 1, Ufa 450062, Russia
2 Institute of Mathematics USC RAS, ul. Chernyshevskogo 112, Ufa 450077, Russia
3 Institute of Mathematics, Potsdam University, Am Neuen Palais 10, 14469 Potsdam, Germany

E-mail: sg@anrb.ru, ok@ufanet.ru and tarkhanov@math.uni-potsdam.de

Received 2 December 2009, in final form 31 March 2010
Published 7 May 2010
Online at stacks.iop.org/JPhysA/43/215203

Abstract
We study the autoresonant solution of Duffing’s equation in the presence of
dissipation. This solution is proved to be an attracting set. We evaluate the
maximal amplitude of the autoresonant solution and the time of transition
from autoresonant growth of the amplitude to the mode of fast oscillations.
Analytical results are illustrated by numerical simulations.

PACS numbers: 02.30.Gp, 02.30.Hq

Introduction

The term autoresonance refers to the growth of the amplitude of oscillations of a solution to a
nonlinear equation under the action of an external oscillating force. This phenomenon looks
like phase locking of a nonlinear oscillator through a periodic driver. The phase locking was
first suggested to accelerate relativistic particles, see [1, 2]. Nowadays, the autoresonance is
thought of as a universal phenomenon which occurs in a wide range of oscillating physical
systems from astronomical to atomic ones [3].

In the general case, the frequency of a nonlinear oscillator depends on the amplitude of
oscillations or, what is the same, on their energy. Hence, in order to change the energy of
a nonlinear oscillator, the frequency of the external force should be adapted to that of the
oscillator. If the force is small then the energy of the oscillations changes slowly. In order
to remain resonant, the frequency of the external force should also adapt itself slowly to the
frequency of the nonlinear oscillator. Moreover, the backward phenomenon proves to occur.
Namely, the slow change of the frequency of the driver results in that the frequency of the
nonlinear oscillator actually follows the driver frequency. For a contemporary survey of the
mathematical aspects of autoresonance, we refer the reader to [4].

The autoresonance phenomenon in systems with dissipation was earlier studied both by
means of mathematical models and in physical experiments. In particular, the existence of
an autoresonant solution for the system of three coupled oscillators with small dissipation
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was established in [5] and for the system with parametric autoresonance in [6]. In the papers
[7, 8], the threshold of capture into autoresonance was discussed in the presence of dissipation.
The resonant phase-locking phenomenon in van der Pol Duffing’s equation with an external
driver of slowly varying frequency was studied in [9].

In this paper we treat two problems for autoresonance in dissipative systems as open for
the time being. Firstly we prove the existence of an attracting set for solution trajectories
captured into autoresonance. Such an attracting set was observed numerically in a number of
papers [5, 6, 10, 11]. The attractor in these systems is a slowly varying steady-state solution.
The solutions captured into autoresonance oscillate around such a solution and lose the energy
of oscillations because of dissipation. Therefore, all captured solutions tend to the steady-state
solution. Mathematically this means that the slowly varying steady-state solution is Lyapunov
stable.

The second problem we deal with consists in evaluating the bound of the autoresonant
growth of solution in the presence of small dissipation in the system. The earlier one observed
that the amplitude growth of nonlinear oscillations in systems with dissipation is bounded, see
[10–12]. From the physical viewpoint, the boundedness of autoresonant growth can be easily
explained. Namely, the work of the driver is proportional to the length of the trajectory in the
phase space. If the dissipation depends linearly on the velocity, then its work is proportional
to the area described by the phase trajectory. Under the growth of energy, the area of the
phase curve grows faster than its length. It follows that even if the dissipation is small, its
work exceeds the work of the external force at some moment and the autoresonant growth of
solution stops. Mathematically this looks like the impossibility of extension of the solution
under phase capture. What happens is the hard loss of stability and passage to fast oscillations.

This work is aimed at finding an asymptotic expansion for the slowly varying steady-state
solution to the primary resonance equation and at showing that it is an attracting set for those
solutions which are captured into the resonance. Moreover, we derive asymptotics for the
maximal amplitude of oscillations under autoresonance with small dissipation and calculate
the period of the autoresonant mode in the solution.

The paper contains seven sections. In section 1 we describe the mathematical setting of
the problem. Section 2 provides a detailed exposition of the main results. Section 3 deals with
asymptotics for the autoresonant mode. In section 4 we discuss the stability of autoresonant
growth. In section 5 we study the solution behaviour in the vicinity of the break of autoresonant
growth. In section 6 we will look more closely at the break of autoresonant growth. Section 7
is concerned with passage from monotone autoresonant growth of the amplitude of nonlinear
oscillations to fast motion solutions.

1. Setting of the problem

We study solution of the primary resonance equation

ı� ′ + (T − |�|2)� + ıδ� = f, (1.1)

where T is an independent variable, δ a dissipation parameter and f is a parameter related to
the amplitude of external force.

The primary resonance equation is of universal character in the mathematical description
of autoresonance. In the case δ = 0, it was first introduced in the paper [13].

The primary resonance equation describes long-term evolution of nonlinear oscillations
under action of a small external force. As but one example we mention Duffing’s equation
with dissipation

u′′ + u + bu′ − cu3 = εA cos(ωt), (1.2)
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where c and A are constants, and b and ε small positive parameters. The frequency of
oscillations on the right-hand side of the equation depends linearly on the time. More precisely,
ω = 1 − αt which is usually referred to as a chirped frequency. The parameter α (called a
chirp rate) determines the rate of change of the frequency.

Duffing’s equation (1.2) proves to be the simplest and so the most general equation where
one observes the phenomenon of autoresonance break because of small dissipation.

For studying autoresonance, it is convenient to use the method of two scales. The
oscillations of the nonlinear equation are observed in the time scale t. The amplitude of these
oscillations depends in turn on the slow time T := ε2/3t .

The introduction of two time scales enables one to split the evolution of solution into two
parts, fast and slow ones, using the asymptotic substitution

u ∼ ε1/3�(T ) eı(t−T 2) + complex conjugate term

in equation (1.2). The standard averaging procedure over the fast time t in the leading-order
term in ε leads to equation (1.1) for the unknown function �, where δ = ε−2/3b/4, α = ε4/3,
f = A/(4

√
2) and c = −2

√
2.

This primary resonance equation is often written as the system of equations for the
amplitude R(T ) = |�(T )| and the phase ϕ(T ) = arg(�). More precisely,

R′ = −δR − f sin ϕ,

ϕ′ = (T − R2) − f

R
cos ϕ,

(1.3)

cf [14].
The autoresonance or phase locking for the solution of system (1.3) means that ϕ′ = o(1)

for T → ∞. This condition along with the second equation of system (1.3) determines the
behaviour for the amplitude growth which reads R = √

T + o(1). The first equation of (1.3)
gives a sufficient condition for the instant at which the phase locking is destroyed, namely
T∗ = f 2/δ2. The analysis of the equation and phase locking condition actually yields an
estimate of autoresonance growth in a dissipative system with small dissipation, δ � 1, see
[10–12].

In this paper, we construct asymptotics for the slowly varying steady-state solution of
equation (1.3) with δ � 1. We prove that this solution is an attracting set for the captured
solutions. Moreover, we show asymptotics of the maximal value of R and evaluate the instant
at which the phase locking is destroyed.

In order to better motivate the problem, we demonstrate results of numerical simulations
for equation (1.1) with δ > 0. In figure 1 one can observe three stages of evolution for the
solution of (1.1). At the first stage, the oscillations are close to some smooth curve. Then,
at the second stage the solution varies slowly. Finally, at the third stage the solution loses its
stability and the amplitude of fast oscillations tends to zero.

2. Results of the paper

To formulate the results it is convenient to change both the independent and dependent variables
by

θ = T δ2,

δ�(T ) = ψ(θ, δ).
(2.1)

The equation for ψ takes the form

ıδ4ψ ′ + (θ − |ψ |2)ψ + ıδ3ψ = δ3f. (2.2)

3
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Figure 1. The solution of (1.1) with parameters f = 1, δ = 0.1, and the initial condition
��T =0 = 0. The modulus of the solution increases slowly, and then at T = 100 the solution passes
from slow changes to fast oscillations under amplitude decay.

Denote R = |ψ | and ϕ = arg(ψ) for θ > 0 and 0 < δ � 1.
In the following, we will work with the primary resonance equation in the form (2.2) and

construct asymptotics of the solution to this equation for finite values of the parameter θ .
The existence time for the autoresonant mode in the solution of (1.1) is evaluated by

θ∗ = f 2 − δ + δ2

(
5

√
6

f 2
z0 − 1

4f 2

)
+ O(

√
δ5),

where z0 ∼ 2.38 is the first real pole of the Painlevé-1 transcendental with zero monodromy
data y1(z, 0, 0). Furthermore, the maximal amplitude is estimated by

R∗ ∼ f − δ

2f
+ δ2

(
1

2f

5

√
6

f 2
z0 − 1

4f 3

)
+ O(

√
δ5).

The comparison of these asymptotics and numerical results is given in figure 2.
We are now able to give an explicit description of asymptotics for the autoresonant solution

which is an attracting set for the solutions captured into autoresonance.
If (f 2 − θ)δ−1 	 1, then R and ϕ behave like

R(θ, δ) ∼
√

θ + δ3

√
f 2 − θ

2θ
− δ4 1

2θ
√

f 2 − θ
+ δ5 f 2 − 4θ

16θ2(f 2 − θ)3/2

+ δ6 (θ − 3f 2)(θ − f 2)3 + θ3/2
√

f 2 − θ

8θ5/2(f 2 − θ)3
, (2.3)

ϕ(θ, δ) ∼ − arctan

( √
θ√

f 2 − θ

)
+ δ

1

2
√

θ
√

f 2 − θ
+ δ2 1

8
√

θ(f 2 − θ)3/2

+ δ3 (f 2 + 2θ)
√

f 2 − θ − 24
√

θ(θ − f 2)3

48(θ − f 2)3θ3/2
. (2.4)
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Figure 2. The modulus of the solution to (2.2) with parameters f = 1, δ = 0.1 and the initial
condition ψ�θ=0 = 0. Here the predicted maximum and time of existence are R∗ and θ∗,
respectively.

This asymptotics is obtained in section 3.
To write the asymptotics in a neighbourhood of θ = f 2, we change the variables by

η = (θ − f 2)δ−1,

r(η, δ) = (R − f )δ−1,

a(η, δ) = (ϕ − (3/2)π)δ−1/2.

The functions r(η, δ) and a(η, δ) have the form

r ∼ η

2f
− δ

η2

8f 3
+ δ2 η3

16f 5
− δ5/2 (2η + 3)

4f 2
√−η − 1

,

a ∼
√−η − 1

f
− δ

(2η2 + 4σ − 1)

24f 3
√−η − 1

,

the representations being valid if δ(−1 − η)−1 � 1. These formulae are derived in section 5.
Close to η = −1 it is convenient to represent the asymptotics in the form

τ = η + 1

δ
,

a = δ1/2u(τ, δ),

r = − 1

2f
+ δ

4f 2τ − 1

8f 3
+ δ2v(τ, δ).

In this domain, the autoresonant mode of the solution loses its stability. The leading-order
term of u relative to δ admits the representation

u(τ) ∼ 5

√(
6

f 2

)3

y1(z, 0, 0),

τ = 5

√
6

f 2
z − 1

4f 2
,
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where y1(z, 0, 0) is the Painlevé-1 transcendental, see [18], i.e. a special solution of the
Painlevé-1 equation y ′′

1 = 6y2
1 + z with asymptotics

y1(z) =
√−z

6
+ O(z−1/2).

The asymptotic formula for v looks like

v(τ) ∼ (τ − u′)
2f

as δ → 0.
The Painlevé-1 transcendental y1(z, 0, 0) has poles on the real axis. The approximate

solution of (1.1) by means of y1(z, 0, 0) is valid up to a small neighbourhood of the first

z0 ∼ 2.38 of these poles or, what is the same, up to τ = τ0 := 5

√
6
f 2 z0 − 1

4f 2 . Near the pole,

the validity domain is determined by the inequality
√

δ

τ − τ0
� 1.

These asymptotic formulae for the solution are established in section 6.
The asymptotics of the solution of (1.1) in a neighbourhood of the pole represents by fast

non-autoresonant oscillations in the new scale of variable θ = f 2 − δ + δ2(τ0 + 3.27δ) +
√

δ5ξ .
It is convenient to write the unknown functions in the form

R ∼ f − δ

2f
+ δ

√
δp(ξ),

ϕ ∼ 3

2
π + s(ξ).

The function s(ξ) is a special solution of the equation

s ′ = −
√

E + f 2(s − sin s),

such that s → 0− as ξ → −∞. The function p(ξ) is determined from the equation

p = − s ′

2f
.

Note that the function s(ξ) depends on a parameter E = p2 + (s − sin s) which tends to 0 as
ξ → −∞. Asymptotic formulae for the rapidly oscillating mode are obtained in section 7.

The results obtained are formulated for those solutions which are captured into
autoresonance. In general, the problem of separating the domains of initial data for solutions,
which are captured into autoresonance and which are not, remains open. However, numerical
simulations show that for T = 0 there is a disc of finite radius in a neighbourhood of the origin,
from which all solutions are captured into autoresonance, cf [4].

In the limit case δ → 0, the form (2.2) of equation (1.1) no longer makes sense. However,
after the inverse transformations T = θ/δ2 and � = δ−1ψ , the asymptotic formulae (2.3) and
(2.4) give a familiar asymptotics [4] for the solution of equation (1.1) when T → ∞.

The important role of Painlevé’s transcendentals in passage from slow changes to fast
oscillations in the solutions of second order equations with slowly varying coefficients was
first observed in [15]. A detailed study of reorganization from slowly varying modes to fast
oscillations for the primary resonance equation without dissipation was given in [16, 17].
In these works, reorganizations are caused in the end by the non-autonomy of the primary
resonance equation. The present paper deals with reorganizations which are caused by the
presence of dissipation in the system. However, also in this case, the behaviour of the

6
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Figure 3. The interval of adjusting asymptotics in passage from Painlevé’s layer to the layer of
fast oscillations. The numerical solution of (2.2) corresponds to f = 1, δ = 0.1 and ψ�θ=0 = 0.

solution in a neighbourhood of the reorganization is completely determined by Painlevé’s
transcendentals.

We now compare the asymptotics obtained with the numerical solution. For clarity
we bring graphs of the amplitude of numerical solution with zero initial data at θ = 0 for
ε = 0.1 and the amplitude of asymptotic solution. The asymptotic solution is composite. We
demonstrate, e.g., the region of passage to fast oscillations in figure 3.

For diverse intervals of θ , the mentioned asymptotics approximates the solution with
different precision. Hence it is reasonable to consider the difference between the numerical
solution and asymptotics in the corresponding intervals.

The graphs given in figure 4 demonstrate rather strikingly that the difference between the
numerical and asymptotic solutions increases in a neighbourhood of passage to fast oscillations.
This is explained by the fact that the correction to the leading-order term in the asymptotic
solutions for fast oscillations has a lower order in δ, namely δ2.

3. Asymptotics of autoresonant growth

In this section, we construct an asymptotic solution to (2.2) in the domain (f 2 − θ)δ−1 	 1
and θ > 0. To this end, we introduce new unknown functions ρ(θ, δ) and α(θ, δ) related to
the amplitude R and phase ϕ of the unknown function ψ by

R(θ, δ) =
√

θ + δ3ρ(θ, δ),

ϕ(θ, δ) = α(θ, δ).

On substituting these formulae into (2.2) and separating the real and imaginary parts of the
equation, we get

δ4ρ ′ +
√

θ + f sin α + δ
1

2
√

θ
+ δ3ρ = 0,

(δ
√

θ + δ4ρ)α′ + 2θρ − f cos α + 3δ3
√

θρ2 + δ6ρ3 = 0.

(3.1)

7
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Figure 4. Here the absolute values of difference between the modulus of numerical solution to
(2.2) for f = 1, δ = 0.1 and ψ�θ=0 = 0 and the modulus of asymptotic solution on distinctive
intervals are given. All the intervals are pairwise disjoint.

Assuming δ to be small, we look for a solution ρ, α in the form of asymptotic series

ρ(θ, δ) ∼
∞∑

k=0

δkρk(θ),

α(θ, δ) ∼
∞∑

k=0

δkαk(θ).

(3.2)

We first derive equations to determine the coefficients of these asymptotic series. For
this purpose we substitute (3.2) into equations (3.1). The trigonometric functions in these
equations are expanded as the Taylor series in a neighbourhood of some point α0. Then we
equate the coefficients of the same powers of parameter δ. As a result we get a recurrent
sequence of triangle systems of linear equations for the unknown coefficients of (3.2). In
particular, for the leading-order terms of series, we obtain√

θ + f sin α0 = 0,

2θρ0 − f cos α0 = 0,

which gives ρ0 and α0.
On equating the coefficients of δ we arrive at the system

2α1f
√

θ cos α0 + 1 = 0,

2θρ1 +
√

θα′
0 + α1f sin α0 = 0,

8
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which readily yields α1 and ρ1 by

α1 = − 1√
θ
√

f 2 − θ
,

ρ1 = 1

2
√

θ

(
α1 +

1

2
√

θ
√

f 2 − θ

)
.

On equating the coefficients of δ2 we get the system

−2α2 cos α0 + sin α0α
2
1 = 0,

4θρ2 + 2
√

θα′
1 +

(
cos α0α

2
1 + 2 sin α0α2

)
f = 0,

implying

α2 =
√

θα2
1

2
√

f 2 − θ
,

ρ2 = − 1

2
√

θ
(α′

1 − α2) +
1

4θ

√
f 2 − θα2

1 .

On equating the coefficients of δ3, one still obtains a transparent system for two unknown
functions α3, ρ3:

f cos α0α3 = −ρ0 +
f

6

(
cos α0α

3
1 + 6 sin α0α2α1

)
,

2
√

θρ3 − α3 = −α′
2 − ρ2

0 − f

θ
cos α0ρ0 +

1

6
α3

1 − f√
θ

cos α0α2α1,

whose solution is

α3 = 1

6

(
α3

1 − 3θ
) −

√
θ√

f 2 − θ
α1α2,

ρ3 = − 1

2
√

θ
(α′

2 + α3) −
√

f 2 − θ

2θ
α1α2 − 1

12
√

θ
α3

1 − (θ2 + 2)(f 2 − θ)

8
√

θ

and so on.
A careful analysis of formulae for αk and ρk obtained in this way actually shows that

αk = O((f 2 − θ)(1−2k)/2),

ρk = O((f 2 − θ)(1−2k)/2)

as θ → f 2 − 0. From these equalities it follows that the constructed asymptotic expansion is
valid for δ(f 2 − θ)−1 � 1.

4. Stability of autoresonant growth

We will look for a solution which is a partial sum of the asymptotic series constructed above,
up to remainders ρ̃(ξ, θ, δ) and α̃(ξ, θ, δ). Namely, we consider

ψ(θ, δ) = (
√

θ + ρ1(θ)δ3 + ρ̃δ3) exp(ı(α0(θ) + α1(θ)δ + α̃δ2)), (4.1)

where 0 < δ � 1 and ξ = δ−3θ is the fast variable.
We substitute (4.1) into (2.2). The task is now to write down the linear part of the system

for ρ̃ and α̃. An easy computation yields the system of equations

ρ̃ ′
ξ =

(√
f 2 − θδ − δ2

2
√

f 2 − θ

)
α̃ + f1(θ) + O(δ3),

α̃′
ξ = −2

√
θρ̃ + δα̃ + f2(θ) + O(δ2).

(4.2)

9
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Figure 5. The graph displays the exponential decay of oscillations with zero initial data in a
neighbourhood of a slowly varying asymptotic solution (bold curve) with f = 1 and δ = 0.05.

The right-hand side of the system has coefficients slowly varying in the fast variable ξ .
Solutions of such systems are usually constructed by the WKB method, see for instance [19].
The eigenvalues of the matrix on the right-hand side of (4.2) are

λ1,2 = ±ı
√

2 4
√

(f 2 − θ)θδ1/2 − δ

2
+ O(δ3/2),

and so the real part of eigenvalues is negative. Hence it follows that the asymptotic solution
constructed above is stable in linear approximation. Figure 5 illustrates this result.

5. Vicinity of the break of autoresonant growth

We change the variables by θ = f 2 − δη. The new independent variable η is stretched with
respect to θ . We will look for a solution of the form

ρ(θ, δ) = f + δr(η, δ),

α(θ, δ) = 3
2π +

√
δa(η, δ).

This substitution leads to the system for two unknown functions r(η, δ) and a(η, δ):

r ′ = −r + f (cos(
√

δa) − 1)/δ,

a′ = δ−5/2(η − f r − δr2) − δ1/2 f sin(
√

δa)

f + δr
.

This system can be rewritten in a slightly different form:

f a2 = 2(−r ′ − r − f
cos(

√
δa) − 1 + δa2/2

δ
,

2f r = η − δr2 − δ5/2

(
a′ − δ−1/2 f sin(

√
δa)

f + δr

)
.

To find asymptotics, we substitute formal series in powers of
√

δ for a(η, δ) and r(η, δ).
Namely

r(η, δ) =
∞∑

k=0

rk(η)δk/2,

a(η, δ) =
∞∑

k=0

ak(η)δk/2.

10
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On substituting these series into the system, we expand both left-hand side and right-hand
side of the equalities as formal series in powers of

√
δ. Then we equate the coefficients of the

same powers of
√

δ in both series. As a result we arrive at a recurrent system of equations for
determining the coefficients of formal series. For k = 0, it reads

2f r0 = η,

f a2
0 = −1 − η.

For k = 1, we get r1 = 0 and a1 = 0. For k = 2, the system is

2f r2 = −r2
0 ,

f a0a2 = − r ′
2 + r2 + f

a4
0

24
,

implying

r2 = − η2

(2f )3
,

a2 = − 2η2 + 4η − 1

24f 3η + 24f 3

√
−1 − η

and so on.
The formulae for the coefficients rk and ak are cumbersome. However, using the recurrence

relations, one can see that the coefficients have a singularity at η = −1. The greater k, the
higher the singularity. This is caused by differentiating the square root

√−1 − η and by
increasing the nonlinear dependence on lower order terms of asymptotics at each step of
iteration. More precisely, we get

ak = O((−1 − η)(1−k)/2),

rk = O((−1 − η)(4−k)/2)

as η → −1, provided k − 4 ∈ N. Hence, it follows that the constructed series is asymptotic
for δ (−1 − η)−1 � 1.

6. Break of autoresonant growth

In a neighbourhood of the point η = −1, we change the variables by the formula η = −1 +τδ.
The new independent variable τ is fast with respect to the original variable η. The solution of
the primary resonance equation is written in the form

a = δ1/2u(τ, δ),

τ = − 1

2f
+

(4f 2τ − 1)

8f 3
δ + δ2v(τ, δ).

Substituting these formulae into the system of equations for a and r, we immediately obtain

v′ − 1

δ2
(f cos(δu) − f ) +

τ

2f
− 1

8f 3
+ δv = 0,

u′ − 2f v +
1

8f 4
(4f 2τ − 1) +

f sin(δu)

f + δ
( − 1

2f
+ δ

8f 3 (4f 2τ − 1) + δ2v
)

− δ

(
1

f
v − 1

64f 6
(4f 2τ − 1)2

)
− δ2 1

4f 3
v(4f 2τ − 1) − δ3v2 = 0.

11
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We will look for a formal solution to this system in the form of power series in δ:

u(τ, δ) =
∞∑

k=0

uk(τ )δk,

v(τ, δ) =
∞∑

k=0

vk(τ )δk.

(6.1)

Substituting these series into the equations and expanding the left-hand sides as power series
in δ, we equate the coefficients of the same powers of δ. This leads to a recurrent sequence of
differential equations for uk and vk . In particular, for u0 and v0, we get

u′
0 + 2f v0 − 1

2f 2

(
τ − 1

4f 2

)
= 0,

v′
0 +

f

2
u2

0 +
1

2f 2

(
τ − 1

4f 2

)
= 0.

For u1 and v1, the system looks like

u′
1 + 2f v1 = 1

f
v0 − u0 − 1

4f 2

(
τ − 1

4f 2

)2

,

v′
1 +

f

2
u0u1 = −v0.

For u2 and v2, the system is

u′
2 + 2f v2 = 1

f
v1 − 1

4f 3
(1 − 4f 2τ)v0 − u1 − 1

2f 2
u0,

v′
2 +

f

2
u0u2 = −v1 +

f

24
u4

0 − f

2
u2

1

and so on.
The system of equations for the leading-order terms reduces to the Painlevé-1 equation.

To see this, let

u0 = 3

√
f 2

6
y(z, c1, c2),

v0 = 3

√
9

2f 7

d

dτ
(y(z, c1, c2)) +

z

24f
− 1

8f 7
,

τ +
1

4f 2
= f 2

6
z.

Then, the differentiation of the equation for u0 leads, by the second equation, to the Painlevé-1
equations in the standard form y ′′ = 6y2 + z. Here y = y(z, c1, c2) is the first Painlevé
transcendental, c1 and c2 are real parameters of the transcendental which are monodromy data,
cf [18], and z is an independent variable.

The solution of the system of equations for the leading-order term is determined through
the first Painlevé transcendental. The parameters of the transcendental are defined by making
asymptotic expansions consistent. To this end we re-expand asymptotic series (6.1) in terms
of the variable τ and equate the coefficients of the same powers of δ. Then we get asymptotics
of the coefficients for τ → −∞, namely

u0 = − 1

f

√−τ + O

(
1√−τ

)
,

v0 = 1

4f 3
τ − 1

16f 5
+ O

(
1√−τ

)
;

12
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u1 = 1

8f 5

(
1√−τ

)
+ O

(
1

τ

)
,

v1 = 1

8f 3
τ 2 − 3

16f 3
τ + O(

√−τ);
and

u2 = 1

12f 3

√
−τ 3 +

5

32f 5

√−τ +
1

2f 2
+ O

(
1√−τ

)
,

v2 = 3

16f 5
τ 2 − 5

32f 7
τ + O(

√−τ).

The asymptotics of the k th correction is

u2n = O(
√

−τ 2n+1), u2n+1 = O(
√

−τ 2n−1),

v2n = O(τn+1), v2n+1 = O(τn+2)

as τ → −∞.
The solution u0 and v0 with given asymptotics as τ → −∞ can be expressed through

the first Painlevé transcendental. The asymptotics of the first Painlevé transcendental were
investigated in [18, 20, 21]. Here it is convenient to make use of the connection of the
asymptotics and the monodromy data:

u0 = 3

√
f 2

6
y(z, c1, c2)� c1=0

c2=0
,

see [18]. Starting with the formula for u0, one obtains easily an expression for v0(τ ) from the
first equation of the system for u0 and v0.

We now turn to construction of solutions uk and vk . The corresponding homogeneous
system is

U ′ + 2f V = 0,

V ′ +
f

2
u0U = 0.

(6.2)

Set

U(τ) = 3

√
f 2

6
w(z).

On differentiating the first equation and substituting V ′ into the second equation, we arrive at
the linearized Painlevé-1 equation w′′ + 2u0w = 0. The general solution of this equation is
known to be a linear combination of the partial derivatives of the first Painlevé transcendental
in parameters, i.e.

w = A1∂c1y(z, c1, c2) + A2∂c2y(z, c1, c2),

where A1 and A2 are arbitrary constants. The asymptotics of y(z, c1, c2) as z → −∞ implies

∂c1y(z, c1, c2)� c1=0
c2=0

= O(z−5/8),

∂c2y(z, c1, c2)� c1=0
c2=0

= O(z3/8),

see [18].
The formulae for the corrections uk and vk can now be obtained by the method of variation

of constants: (
uk

vk

)
= �(τ)

(
Ak

Bk

)
+ �(τ)

∫ τ

a

�(τ ′)−1

(
fk

gk

)
dτ ′.

13
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Here �(τ) stands for the fundamental matrix of the linearized system (6.2) with Wronskian
equal to 1. By a is meant an arbitrary real constant satisfying

a < τ0 := (f 2/6)z0 − 1/(4f 2),

where z0 ∼ 2.38 is the least real pole of the Painlevé transcendental. The constants An and Bn

are uniquely determined from the matching condition for asymptotic solutions.
The first Painlevé transcendental has second-order poles on the real axis, see [21]. In a

neighbourhood of τ0, the constructed asymptotic expansion no longer holds. Indeed, we get

u0 ∼ 6

f 2(τ − τ0)2
,

v0 ∼ 6

f 3(τ − τ0)3

for τ close to τ0.
The general solution for the first correction u1 and v1 can be represented in the form

u1 = a1

(τ − τ0)3
+

3

f 4(τ − τ0)2
+ O((τ − τ0)

−1),

v1 = 3a1

2(τ − τ0)4
+

6

f 5(τ − τ0)3
+ O((τ − τ0)

−2).

Here a1 is one of the solution parameters. The second independent parameter is contained
in the smooth part of asymptotics remainder. The parameters of the solution are uniquely
determined while one constructs it by the method of variation of constants. However, in the
expansion in a neighbourhood of the pole τ0, the parameter a1 can be included in the pole
translation of the leading-order term of order δ, namely τ1 = τ0 − δf 2a1/12. Computations
show that a1 ∼ −38.25. As a result the value τ0 in the expansion of leading-order terms
should be replaced by τ1 and the expansions for u1 and v1 become

u1 = 3

f 4(τ − τ1)2
+ O((τ − τ1)

−1),

v1 = 6

f 5(τ − τ1)3
+ O((τ − τ1)

−2).

Thus, the pole of the leading-order term of asymptotics is defined uniquely up to δ2. More
precisely, the pole asymptotics of the perturbed problem is determined by singling out
summands of order (τ − τ1)

−3 in the asymptotics of uk for k > 1.
The order of singularity at the point τ = τ1 increases, for the higher order corrections

depend on lower order corrections in a nonlinear way. For u2 and v2, we have

u2 ∼ −18

5f 6(τ − τ1)6
,

v2 ∼ −54

5f 7(τ − τ1)7
.

One can show that

u2n−1 = O((τ − τ1)
−2n), u2n = O((τ − τ1)

−4n−2),

v2n−1 = O((τ − τ1)
−2n−1), v2n = O((τ − τ1)

−4n−3)

as τ → τ1.
From the behaviour of uk and vk in a neighbourhood of singular point, we deduce that the

constructed asymptotics is valid in the domain√
δ

|τ − τ1| � 1.

14
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7. Fast motion

In a neighbourhood of the singular point τ1, the behaviour of the solution changes drastically.
The solution begins to vary quickly. The new scale of independent variable is now

ξ = (τ − τ1)√
δ

.

One introduces new dependent variables p(ξ, δ) and s(ξ, δ) by

ρ = f − 2
δ

f
+ δ

√
δ p(ξ, δ),

α = 3

2
π + s(ξ, δ).

(7.1)

The genuine independent variable θ is related to the new independent variable ξ by the formula

θ = f 2 − δ + δ2τ1 +
√

δ5ξ.

Substituting the expressions for ρ, α and θ into the original system (3.1) yields a system
of equations for p(ξ, δ and s(ξ, δ). This system is cumbersome and we need not write it
here in an explicit form. Using the standard procedure of perturbation theory, we look for the
leading-order term of asymptotics in δ of the form

p(ξ, δ) ∼ p0(ξ),

s(ξ, δ) ∼ s0(ξ).

For p0(ξ) and s0(ξ) we obtain the system

p′
0 + f (1 − cos s0) = 0,

s ′
0 + 2fp0 = 0.

This system admits the conservation low

E0 = p2
0 + (sin s0 − s0).

Making (7.1) and asymptotics in a neighbourhood of the pole consistent gives a condition for
p0 and s0, namely both E0 and s0 vanish as η → −∞. The solution of the system for p0 and s0

varies quickly and s0 increases infinitely. The variable s0 stands actually for the argument of
the solution in complex form(

f − 2
δ

f
+ δ

√
δp(ξ, δ)

)
exp

(
ı
3

2
π + s(ξ, δ)

)
.

Thus, in this mode, the phase-locking condition fails to hold and the solution is not
autoresonant.

8. Conclusion

In the paper, it is shown for Duffing’s equation that in the autoresonance domain, there exists
an asymptotic solution which is stable in linear approximation. We evaluate the break time and
the maximal amplitude of the autoresonant solution for the equation with small dissipation.
The break of the autoresonant mode is accompanied by the hard loss of stability and passage
to fast oscillations.
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